
Chapter 8

Brun’s (Pure) Sieve

8.1 Introduction and Notation

In this chapter, we will look at our first example of a 20th century sieve: Brun’s

(pure) sieve. Developed by Viggo Brun in 1915, Brun’s (pure) sieve is a truncated

version of inclusion-exclusion. For many purposes, it will be easier to use than

standard inclusion-exclusion.

Before proceeding further, we will define the basic notation that will be used

throughout these lecture notes. Some of these definitions arise naturally from our

discussion in Chapter 7.

Let A be a set of integers and let P be a set of primes. We will denote by

S(A ,P) the number of terms in A that are not divisible by any primes p 2 P.

One of the goals in this chapter will be to estimate S(A ,P) for various choices of

A and P. The general philosophy is that, if a set A has approximate size x and if

the events “being divisible by a prime p 2 P” are close to being independent, with

each occurring with probability roughly ↵(p), then we would expect something like

S(A ,P) ⇡ x
Y

p2P

(1� ↵(p))

to hold. The goal of Brun’s pure sieve (and its variants) is to justify this approxi-

mation, and make the result more-quantitative (e.g., with reasonable error terms).

And, of course, we would like to be able to use these kinds of arguments to handle

a broad array of di↵erent counting problems.
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Let Ad := {a 2 A : d | a} and take P :=
Q

p2P p. We will sometimes only need

to exclude integers with prime factors below a certain parameter, z > 0. Thus, we

define S(A ,P, z) := S(A ,P \ [1, z]) and P (z) :=
Y

p2P
p6z

p. In the case that P is the

set of all primes, we denote S(A ,P, z) by S(A , z).

To estimate S(A ,P), we will usually assume that #Ad ⇡ g(d)#A for some

multiplicative function g : N ! [0, 1] in the sense that

#Ad = #A g(d) + r(d),(8.1.1)

for squarefree d, where r(d) is an error term that will usually be small. The general

idea is to define g(d) and r(d) so that (8.1.1) holds. For future reference, we record

the sieve notation in the following table:

Notation Meaning

A a set of integers

Ad {a 2 A : d|a}

p a prime number

P a set of primes

P
Y

p2P

p

P (z)
Y

p2P
p6z

1

S(A ,P)
X

n2A
p|n)p/2P

1

S(A ,P, z) S(A ,P \ [1, z])

S(A , z)
X

n2A
p|n)p>z

1
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8.2 Motivating Examples

Example 1. (Sieve of Eratosthenes) For a positive integer x, let A = Z \ [1, x],

and let P be the set of all primes. Then,

#Ad =
jx
d

k
=

x

d
�

nx
d

o
=

#A

d
�

nx
d

o
,

so we can take g(d) = 1/d, and r(d) = �{x/d}.

Suppose now that we want to count how many integers remain after carrying out

the Sieve of Eratosthenes. Recall that we only carry out the Sieve of Eratosthenes

for primes up to
p
x, so if we want to know what remains after removing such primes,

S(A ,
p
x) precisely counts this quantity. Then, we have

S(A ,
p
x) = ⇡(x)� ⇡(

p
x) + 1.(8.2.1)

Later in this chapter, we will use inclusion-exclusion in order to try to obtain an

upper bound for the number of integers that remain after performing the Sieve of

Eratosthenes.

Example 2. (Twin Primes) Let x 2 Z+, let A = {n(n + 2) : 1 6 n 6 x}, and let

P be the set of all primes. Let

⇡2(x) = #{p 6 x : p+ 2 is prime}.

Then,

S(A ,P,
p
x+ 2) = ⇡2(x)� ⇡2(

p
x+ 2).

It is still an open problem whether there are infinitely many pairs of twin primes

(i.e., as x ! 1, does ⇡2(x) ! 1?). Brun showed that most primes do not belong

to a twin prime pair by showing that the sum of the reciprocals of twin primes

converges. We will prove that later in this chapter.

For d squarefree, what is #Ad? This amounts to counting solutions to

n(n+ 2) ⌘ 0 (mod d).

Say that N(d) is the number of such solutions. Then

#Ad = N(d)
x

d
+ r(d).
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In the notation defined at the beginning of this chapter, this means that we take

g(d) = N(d)
d

. We can actually ask the same question for any polynomial f(x) 2 Z[x],
i.e., for which values of n is f(n) ⌘ 0 (mod d)? By the Chinese Remainder Theorem,

the function N(d) is multiplicative, hence g(d) is multiplicative as well.

Example 3. (The n2 + 1 problem) Let A = {n2 + 1 : 1 6 n 6 x} and let P be

the set of all primes. Then S(A ,P, x) = S(A , x) is the number of primes of the

form n2+1 which are greater than x. So integers n with (x� 1)1/2 < n 6 x survive.

Notice that #Ad = 0 if d is divisible by a prime p ⌘ 3 (mod 4).

When is n2+1 ⌘ 0 (mod p)? There is one solution if p = 2, no solutions if p ⌘ 3

(mod 4), and two solutions if p ⌘ 1 (mod 4). Thus, when d is squarefree, we have

N(d) =
Y

p|d

N(p) =

8
<

:
0 if d divisible by some p ⌘ 3 (mod 4)

2W0(d) if else.

As in the previous example, we take g(d) = N(d)
d

.

Now that we understand how to set up these examples as sieving problems, we are

ready to learn Brun’s (pure) sieve, which will allow us to approximate S(A ,P, z).

8.3 Useful Lemmas

In this section, we present some lemmas that will be used for Brun’s (pure) sieve.

Proposition 8.3.1. With the notation defined as above, we have

S(A ,P, z) =
X

d|P (z)

µ(d)Ad.
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Proof. Notice that

S(A ,P, z) =
X

a2A
gcd(a,P (z))=1

1

=
X

a2A

X

d|gcd(a,P (z))

µ(d)

=
X

a2A

X

d|a
d|P (z)

µ(d)

=
X

d|P (z)

µ(d)Ad.

We will also need the following combinatorial lemma:

Lemma 8.3.2. Let n 2 N. Then

mX

k=0

(�1)k
✓
n

k

◆

is positive or negative according to whether m is even or odd.

Proof. For |x| < 1, we have (1 � x)�1(1 � x)n = (1 � x)n�1. Hence, if we replace

each term with its corresponding power series, we obtain

1X

k=0

xk

nX

k=0

(�1)n
✓
n

k

◆
xk =

n�1X

k=0

(�1)k
✓
n� 1

k

◆
xk.

Let’s look at the coe�cients of xm on both sides of the equation. On the lefthand

side, we have
P

m

k=0(�1)k
�
n

k

�
. On the righthand side, we have (�1)m

�
n�1
m

�
. Thus, if

m is odd, then the sum
P

m

k=0(�1)k
�
n

k

�
will be negative, and if m is even then the

sum will be positive.
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8.4 Brun’s (pure) sieve

In the beginning of this section, we remarked that Brun’s (pure) sieve is a truncated

version of inclusion-exclusion. Now, we will finally see this in action. Observe that

S(A ,P, z) =
X

d|P (z)

µ(d)#Ad = #A1 �

X

p|P (z)

#Ap +
X

pq|P (z)

#Apq ± · · · .(8.4.1)

Useful Fact. If you stop at a “+” term in (8.4.1), you will have an overestimate,

and if you stop at a “�” term, you will have an underestimate.

Let !(n) denote the number of distinct prime divisors of n. Then,

S(A ,P, z) =
⇡(z)X

k=0

(�1)k
X

d|P (z)
!(d)=k

#Ad.

So, the Useful Fact says:

Proposition 8.4.1. With the notation defined as above, we have

S(A ,P, z) 6
mX

k=0

(�1)k
X

d|P (z)
!(d)=k

#Ad

if m is even and

S(A ,P, z) >
mX

k=0

(�1)k
X

d|P (z)
!(d)=k

#Ad

if m is odd.

Proof. First, we have
mX

k=0

(�1)k
X

d|P (z)
!(d)=k

#Ad =
X

d|P (z)
!(d)6m

µ(d)#Ad

=
X

d|P (z)
!(d)6m

µ(d)
X

a2A
d|a

1

=
X

a2A

X

d|(a,P (z))
!(d)6m

µ(d),
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where the final step follows from swapping the order of summation.

Assume that n is squarefree. If m > !(n), then

f(n) =
X

d|n

µ(d) =

8
<

:
1 if n = 1

0 if n > 1.

If m < !(n): say !(n) = W and n has the distinct prime factors p1, p2, ..., pW . Then

f(n) =
mX

k=0

(�1)k
X

d|n
!(d)=k

1

=
mX

k=0

(�1)k
✓
W

k

◆
.

By Lemma 8.3.2, we have:

f(1) = 1,

f(n) = 0 if n > 1 and !(n) 6 m,

f(n) > 0 if m is even and !(n) > m,

f(n) 6 0 if m is odd and !(n) > m.

Then, X

d|P (z)
!(d)6m

µ(d)#Ad =
X

a2A

f(gcd(a, P (z))).

If m is even then this sum is at least
X

a2A
(a,P (z))=1

1 = S(A ,P, z).

In other words, we have

S(A ,P, z) 6
X

d|P (z)
!(d)6m

µ(d)#Ad

in the case where m is even. On the other hand, if m is odd,

S(A ,P, z) >
X

d|P (z)
!(d)6m

µ(d)#Ad.
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Remarks:

(1) The error term in Proposition 8.4.1 won’t be too large since we have at most

m terms that we are summing.

(2) In general, it is di�cult to show that the lower and upper bounds are approx-

imately equal.

Theorem 8.4.2 (Brun’s pure sieve). Let #Ad = #A g(d) + r(d). For all m 2 Z>0,

we have

S(A ,P, z) = #A
Y

p2P
p6z

(1� g(p)) +O
⇣ X

d|P
!(d)6m

|r(d)|
⌘
+O

⇣
#A

X

d|P
!(d)>m

g(d)
⌘
.

Proof. From Proposition 8.4.1, we know that if m is even, then

S(A ,P, z) 6
X

d|P
!(d)6m

µ(d)#Ad.

Since m� 1 is odd, we have
X

d|P
!(d)6m�1

µ(d)#Ad 6 S(A ,P).

An analogous argument applies when m odd. Therefore,

S(A ,P) =
X

d|P
!(d)6m

µ(d)#Ad +O
⇣ X

d|P
!(d)=m

Ad

⌘

=
X

d|P
!(d)6m

µ(d)(#A g(d) + r(d)) +O
⇣ X

d|P
!(d)=m

#A g(d) + r(d)
⌘

= #A
X

d|P
!(d)6m

µ(d)g(d) +O
⇣ X

d|P
!(d)6m

|r(d)|
⌘
+O

⇣ X

d|P
!(d)=m

#A g(d)
⌘

= #A
⇣X

d|P

µ(d)g(d)�
X

d|P
!(d)>m

µ(d)g(d)
⌘
+O

⇣ X

d|P
!(d)6m

|r(d)|
⌘
+O

⇣ X

d|P
!(d)=m

#A g(d)
⌘

= #A
Y

p2P

(1� g(p)) +O
⇣ X

d|P
!(d)6m

|r(d)|
⌘
+O

⇣
#A

X

d|P
!(d)>m

g(d)
⌘
.
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8.5 Generalizations

The term “Brun’s sieve” is often used to describe a number of di↵erent (but related)

sieves. In each of these sieves, the goal is more-or-less the same: to obtain estimates

of the form

S(A ,P) ⇡ x
Y

p2P

(1� ↵(p)),

where ↵ is as defined in the beginning of this chapter. Brun’s pure sieve is the

simplest version, and the one most often taught to students. But, it is worth em-

phasizing that sometimes it isn’t powerful enough for a particular application. See,

for example, Exercise 8.3. As hard as one might try, Brun’s pure sieve alone just

is not su�cient to prove this (very useful) result. Instead, we turn to a series of

improvements on Brun’s original idea. One such improvement is called the Brun-

Hooley sieve. It comes from a 1994 paper of Christopher Hooley in which he started

with Brun’s pure sieve and derived a multidimensional version that allows for sharper

bounds. It is important to note that Hooley proved both upper and lower bounds.

However, the proof of the lower bound is quite complicated, so we omit describing

it here. (Only the upper bound will be used in this course.)

Suppose that we partition a set of primes P into r disjoint sets,

P =
r[

j=1

Pj.

Then n is divisible by no p 2 P if and only if n is divisible by no p 2 Pj for all

1 6 j 6 r. Define Pj :=
Q

p2Pj
p and apply the machinery (with some adaptations)

from the proof of Brun’s pure sieve to Pj and Pj in place of P and P (for details,

see Pollack pp. 182 - 185). This allows us to obtain:

Theorem 8.5.1 (Brun-Hooley Upper Bound Sieve). Let P =
S

r

j=1 Pj be a parti-

tion of a set P. Suppose that ↵(p) < 1 for all p 2 P. For any choice of nonnegative

even integers m1, ...,mr, we have

S(A ,P) 6 x
Y

p2P

(1�↵(p)) exp
⇣ rX

j=1

⇣ (j)X
/

(j)Y⌘⌘
+O

⇣ X

d1,...,dr
dj |Pj , !(dj)6mj

|r(d1 · · · dr)|
⌘
,

where
Q(j) :=

Y

p2Pj

(1� ↵(p)) and
P(j) :=

X

dj |Pj

!(dj)=mj+1

↵(dj).
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8.6 Applications

For the remainder of this chapter, we will carefully examine several applications of

inclusion-exclusion and Brun’s (pure) sieve.

8.6.1 Sieve of Eratosthenes

In this section, we will attempt to use inclusion-exclusion to bound the count of

integers that remain after the Sieve of Eratosthenes is performed. Let

⇡(x, z) := #{n 6 x : p | n ) p > z}.

Some people refer to the Sieve of Eratosthenes as a method for computing ⇡(x, z)

in this way. Let us see how Proposition 8.3.1 can be applied to Example 1. Namely,

for z = x1/2, we have

⇡(x)� ⇡(x1/2) + 1 = S(A ,P, z)

=
X

d|P (z)

µ(d)

�
x

d

⌫
.

We have just obtained an exact formula for ⇡(x, z). However, it is a bit unsat-

isfying, since the result does not give us a sense of how large ⇡(x, z) really is (in

terms of x and z). Observe that b
x

d
c = x

d
+ (bx

d
c �

x

d
). We will use this to rewrite

⇡(x, z) in a way that allows us to avoid having floor functions in our main term. In

particular, we have

⇡(x, z) = x
X

d|P (z)

µ(d)

d
+
X

d|P (z)

µ(d)

 �
x

d

⌫
�

x

d

!
.

In the main term, we can replace the Dirichlet series with its corresponding Euler

product,
Q

p6z
(1�1/p). We can crudely bound the error term by taking its absolute

value and observing that this is at most 2⇡(z). Therefore, we obtain

⇡(x, z) = x
Y

p6z

✓
1�

1

p

◆
+O(2⇡(z)).(8.6.1)
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If z tends to infinity with x su�ciently slowly, then we will obtain an asymptotic

here. Namely, by Mertens’ Second Theorem, we have

x
Y

p6z

✓
1�

1

p

◆
⇠ e��

x

log z
,

as x ! 1. However, in this particular case (asking how many integers remain

after performing the Sieve of Eratosthenes), we take z = x1/2, which is rather large

relative to x. In that case, the so-called “error term” is of size O(2
p
x), which is

much larger than the main term! As a result, the equation (8.6.1) does not give us

the asymptotic formula that we were hoping for. In fact, it is not even true that

⇡(x, x1/2) ⇠ x
Q

p6x1/2(1� 1/p). By the prime number theorem, we see that

⇡(x, x1/2) = ⇡(x)� ⇡(x1/2) + 1 ⇠ x/ log x.

8.6.2 Primes of the form n2 + 1

Let ⇡n2+1(x) denote the number of n 6 x for which n2 + 1 is prime. Here, we take

A = {n2 + 1 : n 6 x} and P to be the set of all primes. Then, for z 6 x, we have

⇡n2+1(x) 6 S(A ,P, z) + z1/2.

As in Example 3, let N(p) be the number of solutions to the congruence n2 + 1 ⌘ 0

(mod p). We saw that N(2) = 1 and, for odd primes p, N(p) = 0 or 2, depending

on whether p ⌘ 3 (mod 4) or 1 (mod 4). In general, with N(d) defined analogously

for any positive integer d, note that

jx
d

k
N(d) 6 #Ad 6

lx
d

m
N(d).

Hence,

|r(d)| =
���#Ad � x

N(d)

d

��� 6 N(d).

Therefore, by Proposition 8.3.1 (inclusion-exclusion),

S(A ,P, z) =
X

d|P (z)

µ(d)
⇣
x
N(d)

d
+ r(d)

⌘
= x

Y

p6z

⇣
1�

N(p)

p

⌘
+O

0

@
X

d|P (z)

N(d)

1

A .
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This shows that for x > 0 and z > 2, we have

⇡n2+1(x) 6 S(A ,P, z) + z1/2(8.6.2)

=
1

2
x

Y

p6z

p⌘1 (mod 4)

✓
1�

2

p

◆
+O

⇣ X

d|P (z)

N(d)
⌘
+ z1/2.(8.6.3)

First, we focus on the main term. By Exercises 8.1 and 8.2,

Y

p6z

p⌘1 (mod 4)

⇣
1�

2

p

�
⇠

C

log z

for some C > 0. To handle the O-term, we observe that

X

d|P (z)

N(d) =
Y

p6z

(1 +N(p)) < 3z.

Inserting these into (8.6.2), and taking z = 1
2 log x, allows us to conclude that

⇡n2+1(x) ⌧ x/ log log x. In particular, this tells us that the set of integers n such

that n2 + 1 is prime has asymptotic density zero.
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8.6.3 Twin primes

Let

⇡2(x) := #{n 6 x : n and n+ 2 prime}.

Let’s first convince ourselves heuristically that there should be infinitely many pairs

of twin primes. By the prime number theorem, the probability that a random

number n 6 x is prime should be about 1
log x . By the same logic, the probability

that a random number n + 2 is prime should also be 1
log x . If these two events

were independent, then the probability that both n and n + 2 are simultaneously

prime should be 1
(log x)2 , which would imply that there are about x

(log x)2 primes in

the interval [1, x]. Since this tends to infinity with x, it would seem to imply that

there are infinitely many pairs of twin primes... However, this is wrong, since the

same argument would show that there are infinitely many pairs of primes n, n + 1,

and there is exactly one value of n with this property (namely, n = 2). Clearly,

we were incorrect to assume that the events “n is prime” and “n + 2 is prime” are

independent!

We can revise our heuristic argument to try to correct for the problem of non-

independence. Let p and p0 be independently chosen random integers. Look at:

P (p, p+ 2 not both divisible by q)

P (p, p0 not both divisible by q)
,(8.6.4)

for each small prime q. Since

P (q | p) =
1

q
,

then

P (q - p) = 1�
1

q
.

Thus, the denominator in equation (8.6.4) should be

P (q - p and q - p0) =
✓
1�

1

q

◆2

.

On the other hand, let’s consider the numerator:

P (q - p and q - (p+ 2)) = P (p 6⌘ 0 or � 2 (mod q)).
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Observe that

P (p 6⌘ 0 or � 2 (mod q)) =

(
1� 2/q if q > 2

1� 1/2 if q = 2.

Hence, if q > 2 then the correction factor for divisibility by q is

(1� 2
q
)

(1� 1
q
)2
.

If q = 2 then the correction factor is

1� 1
2

(1� 1
2)

2
= 2.

Thus, we define

c2 := 2
Y

q prime
q>3

(1� 2/q)

(1� 1/q)2
⇡ 1.3203236....

This suggests that

#{p 6 x : p and p+ 2 prime} ⇡ c2
x

(log x)2
.

We call c2 the Twin Prime Constant.

Unfortunately, this is still not a rigorous proof, since it relies on the assumption

that the primes p are uniformly distributed among the residue classes mod q for all

q 6 x. We won’t be able to give a precise asymptotic in this course, as doing so

would amount to proving the Twin Prime Conjecture! However, we can use Brun’s

pure sieve in order to obtain an upper bound for ⇡2(x).

Let us recall our notation from Example 2. We let A = {n(n + 2) : n 6 x}

and P = {p 6 z : p prime}. Moreover, let N(p) be the number of solutions to the

congruence n(n + 2) ⌘ 0 (mod p). Recall that N(2) = 1 and that N(d) = 2!(d) for

d|P . Assume that z 6 x1/20 log2 x and that x and z both tend to infinity. By Brun’s

(pure) sieve, we obtain

S(A ,P) = x
Y

p2P

(1� g(p)) +O
⇣ X

d|P
!(d)6m

|r(d)|
⌘
+O

⇣
x
X

d|P
!(d)>m

g(d)
⌘
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for all m > 0. We will first focus on bounding the main term, and then we will

handle the error terms. For ease of reference, let

�1 =
X

d|P
!(d)6m

|r(d)| and �2 = x
X

d|P
!(d)>m

g(d).

Recall that

Ad = xg(d) + r(d) = x
N(d)

d
+ r(d),

where |r(d)| 6 N(d) = 2!(d). Then by the corrected version of the heuristic argument

above, we have
Y

p2P

(1� g(p)) =
1

2

Y

2<p6z

⇣
1�

2

p

⌘

= 2
Y

2<p6z

1� 2
p

(1� 1
p
)2

Y

p6z

⇣
1�

1

p

⌘2

⇠
2c2e�2�

(log z)2
,

where the final asymptotic follows from Mertens’ Second Theorem (and c2 is the

Twin Prime Constant).

To handle the error terms �1 and �2, we will take m = 10blog log zc. Then

�1 =
X

d|P
!(d)6m

|r(d)|

6
X

d|P
!(d)6m

2!(d)

=
mX

k=0

2k
✓
⇡(z)

k

◆

6
mX

k=0

2k⇡(z)k

6
mX

k=�1

(2⇡(z))k = (2⇡(z))m ·
1

1� 1
2⇡(z)

6 2(2⇡(z))m

6 2zm.
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Hence, it follows that

�1 6 2zm 6 2z10 log log z 6 2z10 log log x 6 2x1/2,

where the final inequality uses that z 6 x1/20 log2 x (here we define log2(x) = log log x).

We will use this last inequality to show that the error term �1 is small relative

to the main term. Observe that

2x1/2

x

(log z)2
6 2x�1/2(log x)2

(20 log2 x)2
! 0

as x ! 1. Therefore, �1 = o( x

(log z)2 ).

Next, we will show that �2 is also small relative to the main term. Recall that

�2 = x
X

d|P
!(d)>m

g(d) = x
X

k>m

X

d|P
!(d)=k

g(d).

By unique factorization and multiplicativity of g, we have

X

d|P
!(d)=k

g(d) =
X

p1<p2<···<pk6z

g(p1)g(p2) · · · g(pk).

Then, by the multinomial theorem, we have

⇣X

p6z

g(p)
⌘k

=
X

k1+···+km=k

k1,...,km>0

k!

k1! · · · km!

mY

j=1

g(pj)
kj

> k!
X

p1<p2<···<pk6z

g(p1)g(p2) · · · g(pk).

Therefore, we have X

d|P
!(d)=k

g(d) 6 1

k!
(
X

p6z

g(p))k.

By Mertens’ First Theorem,

X

p6z

1

p
6 log2 z + c
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for all z > 3, were c is a constant. Recalling that g(p) 6 2
p
, we obtain

�2 6 x
X

k>m

1

k!
(
X

p6z

g(p))k 6 x
X

k>m

(2 log2 z + 2c)k

k!
.

Let ak =
(2 log2 z + 2c)k

k!
. Then

ak+1

ak
=

2 log2 z + 2c

k + 1
6 2 log2 z + 2c

10blog2 zc+ 1
6 1

2

for z su�ciently large. Hence, ak+1 6 ak/2. As a result, we have

�2 6 x
X

k>m

ak 6 x(am +
am
2

+
am
4

+ · · · )

= 2xam = 2x
(2 log2 m+ 2c)m

m!
.

Now, since

em = 1 +m+
m2

2!
+ · · · > mm

m!
,

we have

m! >
✓
m

e

◆m

.

Thus,

�2 6 2x

✓
2e log2 z + 2ec

m

◆m

6 2x

✓
3

5

◆m

.

Now, since m = 10blog2 zc, we have

2x

✓
3

5

◆m

⌧ 2x

✓
3

5

◆10 log2 z

= 2xe10 log
3
5 log2 z

= 2xe�5 log2 z =
2x

(log z)5
= o

✓
x

(log z)2

◆
,

where the third inequality follows from the fact that 10 log 3
5 < �5. Therefore,

�2 = o( x

(log z)2 ), so both error terms are negligible relative to the main term.

We have just shown:
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Theorem 8.6.1. If z ! 1 as x ! 1, with z 6 x1/20 log2 x, then

S(A ,P) ⇠
2c2e�2�x

(log z)2
,

where � is the Euler-Mascheroni constant and c2 is the Twin Prime constant.

Corollary 8.6.2. We have

⇡2(x) ⌧
x

(log x)2
(log2 x)

2.

Proof. If n, n+2 are both prime then n 6 z or both n, n+2 have only prime factors

exceeding z. Therefore,

⇡2(x) 6 S(A ,P) + z.

Taking z = x1/20 log2 x, we have

⇡2(x) ⌧ x

✓
log2 x

log x

◆2

+ x1/20 log2 x ⌧ x

✓
log2 x

log x

◆2

.

Corollary 8.6.3. Let P be the set of all primes p such that p + 2 is also prime.

Then
P

p2P
1
p
converges.

Proof. Let pn be the nth prime such that pn + 2 is also prime. Then

n = ⇡2(pn) ⌧ pn

✓
log2 n

log n

◆2

.

Hence,
1

pn
⌧

1

n

✓
log2 n

log n

◆2

.

By the integral test, we see that
P

1
pn

converges.

Remark 8.6.4. The fact that the sum of reciprocals of twin primes converges DOES

NOT imply that there are only finitely many pairs of twin primes. It simply tells

us that the set of twin primes is much sparser than the set of primes.
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8.7 Exercises

Exercise 8.1. Suppose that for each prime p, we have an integer kp with 0 6 kp < p,

kp = O(1), and that for some real numbers c, d > 0,

X

p6x

kp log p

p
= c log x+ d+ o(1).

Prove that there is some number C > 0 such that

Y

p6x

(1� kp/p) ⇠ C/(log x)c

as x ! 1.

Hint: Use Exercise 6.3.

Exercise 8.2. Suppose kp = 2 if p ⌘ 1 (mod 4), kp = 0 if p ⌘ 3 (mod 4) and

k2 = 1. Show that this choice of numbers kp satisfies the previous problem with

c = 1. What is the relevance of this problem to primes of the form n2 + 1?

Exercise 8.3 (due to P. Pollack). The following is often referred to as “Brun’s

method.” Fix a natural number k.

(a) Let A > 0. Suppose that to each prime p 6 xA, we associate kp 6 k residue

classes modulo p. Show that the number of natural numbers n 6 x avoiding

all of these residue classes is

⌧k,A x
Y

p6xA

✓
1�

kp
p

◆
(for x > 0),

where the implied constant is independent of the particular choice of residue

classes.

(b) Show that there is a constant B > 0, depending only on k, with the following

property: If we choose kp 6 k residue classes modulo p for each prime p 6 xB,

then the number of natural numbers n 6 x avoiding all these classes is

�k x
Y

p6xB

✓
1�

kp
p

◆
(for x ! 1),

again uniformly in the particular choice of residue classes.
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Hint: Use the Chinese Remainder Theorem to construct a polynomial F for which

p | F (n) precisely when n falls into one of the kp chosen residue classes mod p.

Remark: From (a) and (b) we may re-derive the result given in this chapter re-

garding the twin prime problem, with a slight loss of precision. In that case, the

forbidden residue classes are 0 and �2 mod p.

Exercise 8.4 (Brun-Titchmarsh inequality). Let x > 2. Suppose that a and m are

coprime integers with 1 6 m < x. Prove that

⇡(x;m, a) ⌧
x

'(m) log x

m

,

where the implied constant is absolute. (Recall that ⇡(x;m, a) denotes the number

of primes p 6 x with p ⌘ a (mod m).) Is this still true without the assumption that

a and m are relatively prime?

Hint: You may find Exercises 6.3(a), 8.1, and 8.3 to be useful here.

Exercise 8.5 (due to P. Pollack). Suppose that F (T ) 2 Z[T ] is irreducible over Q
and that the leading coe�cient of F (T ) is positive. For each natural number d, let

⌫(d) denote the number of roots of F modulo d. A theorem of Landau asserts that

for x > 3,
X

p6x

⌫(p)

p
= log log x+ CF +OF

✓
1

log x

◆
,

where CF is a constant depending on F . Use this along with Exercise 8.3 to show

that the number of n 6 x for which F (x) is prime is ⌧F x/ log x for x > 3.
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